89 research outputs found

    Control-Oriented Modeling and Experimental Validation of a Deoiling Hydrocyclone System

    Get PDF
    As the treated water from offshore oil and gas production is discharged to the surrounding sea, there is an incentive to improve the performance of the offshore produced water treatment, to reduce the environmental pollutants to the sea. Regulations determine both the maximum allowed oil concentration and the total annual quantity. It is reasonable to assume that when better separation equipment or methods are developed, the regulation will become more strict, and force other producers to follow the trend towards zero harmful discharge. This paper develops and validates a hydrocyclone model to be used as a test-bed for improved control designs. The modeling methodology uses a combination of first-principles to define model structure and data-driven parameter identification. To evaluate and validate the separation performance, real-time fluorescence-based oil-in-water (OiW) concentration monitors, with dual redundancy, are installed and used on sidestreams of a modified pilot plant. The installed monitors measure the inlet and outlet OiW concentration of the tested hydrocyclone. The proposed control-oriented hydrocyclone model proved to be a reasonable candidate for predicting the hydrocyclone separation performance

    Hammerstein–Wiener Model Identification for Oil-in-Water Separation Dynamics in a De-Oiling Hydrocyclone System

    Get PDF
    To reduce the environmental impact of offshore oil and gas, the hydrocarbon discharge regulations tend to become more stringent. One way to reduce the oil discharge is to improve the control systems by introducing new oil-in-water (OiW) sensing technologies and advanced control. De-oiling hydrocyclones are commonly used in offshore facilities for produced water treatment (PWT), but obtaining valid control-oriented models of hydrocyclones has proven challenging. Existing control-oriented models are often based on droplet trajectory analysis. While it has been demonstrated that these models can fit steady-state separation efficiency data, the dynamics of these models have either not been validated experimentally or only describe part of the dynamics. In addition to the inlet OiW concentration, they require the droplet size distribution to be measured, which complicates model validation as well as implementation. This work presents an approach to obtain validated nonlinear models of the discharge concentration, separation efficiency, and discharge rate, which do not require the droplet size distribution to be measured. An exhaustive search approach is used to identify control-oriented polynomial-type Hammerstein–Wiener (HW) models of de-oiling hydrocyclones based on concentration measurements from online OiW monitors. To demonstrate the effectiveness of this modeling approach, a PI controller is designed using the Skogestad internal model control (SIMC) tuning rules to control the discharge OiW concentration directly. The identification experiment emulates an offshore PWT system with installed OiW monitors, which is realistic with the legislative incentive to include online OiW discharge measurements. The proposed approach could enable the application of OiW-based control on existing offshore PWT facilities, resulting in improved de-oiling performance and reduced oil discharge

    ADAM10 is expressed in human podocytes and found in urinary vesicles of patients with glomerular kidney diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The importance of the Notch signaling in the development of glomerular diseases has been recently described. Therefore we analyzed in podocytes the expression and activity of ADAM10, one important component of the Notch signaling complex.</p> <p>Methods</p> <p>By Western blot, immunofluorescence and immunohistochemistry analysis we characterized the expression of ADAM10 in human podocytes, human urine and human renal tissue.</p> <p>Results</p> <p>We present evidence, that differentiated human podocytes possessed increased amounts of mature ADAM10 and released elevated levels of L1 adhesion molecule, one well known substrate of ADAM10. By using specific siRNA and metalloproteinase inhibitors we demonstrate that ADAM10 is involved in the cleavage of L1 in human podocytes. Injury of podocytes enhanced the ADAM10 mediated cleavage of L1. In addition, we detected ADAM10 in urinary podocytes from patients with kidney diseases and in tissue sections of normal human kidney. Finally, we found elevated levels of ADAM10 in urinary vesicles of patients with glomerular kidney diseases.</p> <p>Conclusions</p> <p>The activity of ADAM10 in human podocytes may play an important role in the development of glomerular kidney diseases.</p

    Pretransplant endotrophin predicts delayed graft function after kidney transplantation

    Get PDF
    Delayed graft function after kidney transplantation is common and increases morbidity and health care costs. There is evidence that endotrophin, a specific fragment of pro-collagen type VI, promotes the inflammatory response in kidney diseases. We tested the hypothesis that pretransplant endotrophin in kidney transplant recipients may be associated with the risk of delayed graft function. Pretransplant plasma endotrophin was assessed using an enzyme-linked immunosorbent assay in three independent cohorts with 806 kidney transplant recipients. The primary outcome was delayed graft function, i.e., the necessity of at least one dialysis session within one-week posttransplant. In the discovery cohort median pretransplant plasma endotrophin was higher in 32 recipients (12%) who showed delayed graft function when compared to 225 recipients without delayed graft function (58.4 ng/mL [IQR 33.4–69.0]; N = 32; vs. 39.5 ng/mL [IQR 30.6–54.5]; N = 225; P = 0.009). Multivariable logistic regression, fully adjusted for confounders showed, that pretransplant plasma endotrophin as a continuous variable was independently associated with delayed graft function in both validation cohorts, odds ratio 2.09 [95% CI 1.30–3.36] and 2.06 [95% CI 1.43–2.97]. Pretransplant plasma endotrophin, a potentially modifiable factor, was independently associated with increased risk of delayed graft function and may be a new avenue for therapeutic interventions

    Stability of Circulating Blood-Based MicroRNAs - Pre-Analytic Methodological Considerations

    Get PDF
    Background and aim The potential of microRNAs (miRNA) as non-invasive diagnostic, prognostic, and predictive biomarkers, as well as therapeutic targets, has recently been recognized. Previous studies have highlighted the importance of consistency in the methodology used, but to our knowledge, no study has described the methodology of sample preparation and storage systematically with respect to miRNAs as blood biomarkers. The aim of this study was to investigate the stability of miRNAs in blood under various relevant clinical and research conditions: different collection tubes, storage at different temperatures, physical disturbance, as well as serial freeze-thaw cycles. Methods Blood samples were collected from 12 healthy donors into different collection tubes containing anticoagulants, including EDTA, citrate and lithium-heparin, as well as into serum collection tubes. MiRNA stability was evaluated by measuring expression changes of miR-1, miR21 and miR-29b at different conditions: varying processing time of whole blood (up to 72 hours (h)), long-term storage (9 months at -80 degrees C), physical disturbance (1 and 8 h), as well as in a series of freeze/thaw cycles (1 and 4 times). Results Different collection tubes revealed comparable concentrations of miR-1, miR-21 and miR-29b. Tubes with lithium-heparin were found unsuitable for miRNA quantification. MiRNA levels were stable for at least 24 h at room temperature in whole blood, while separated fractions did show alterations within 24 h. There were significant changes in the miR-21 and miR-29b levels after 72 h incubation of whole blood at room temperature (p< 0.01 for both). Both miR-1 and miR-21 showed decreased levels after physical disturbance for 8 h in separated plasma and miR-1 in serum whole blood, while after 1 h of disturbance no changes were observed. Storage of samples at -80 degrees C extended the miRNA stability remarkably, however, miRNA levels in long-term stored (9 months) whole blood samples were significantly changed, which is in contrast to the plasma samples, where miR-21 or miR-29b levels were found to be stable. Repetitive (n = 4) freeze-thaw cycles resulted in a significant reduction of miRNA concentration both in plasma and serum samples. Conclusion This study highlights the importance of proper and systematic sample collection and preparation when measuring circulating miRNAs, e.g., in context of clinical trials. We demonstrated that the type of collection tubes, preparation, handling and storage of samples should be standardized to avoid confounding variables influencing the results

    Time‐dependent antiarrhythmic effects of flecainide on induced atrial fibrillation in horses

    Get PDF
    Background, Objective: Pharmacological treatment of atrial fibrillation (AF) in horses can be challenging because of low efficacy and adverse effects. Flecainide has been tested with variable efficacy. To test whether the efficacy of flecainide is dependent on AF duration. Animals and Methods: Nine Standardbred mares. Factorial study design. All horses were instrumented with a pacemaker and assigned to a control or an AF group. On day 0, all horses were in sinus rhythm and received 2 mg/kg flecainide IV. Atrial fibrillation subsequently was induced in the AF group by pacemaker stimulation. On days 3, 9, 27, and 55, flecainide was administered to all horses, regardless of heart rhythm. Results: Conclusions and Clinical ImportanceAll horses in AF cardioverted to sinus rhythm on days 3 and 9. On day 27, 5/6 horses cardioverted, whereas only 2/6 cardioverted on day 55. The time from the start of flecainide infusion to cardioversion (range, 3-185min, log transformed) showed linear correlation with the cumulative duration of AF (r(2)=.80, P<.0001). Flecainide induced abnormal QRS complexes in 4/6 AF horses and 1/3 controls. A positive correlation was found between heart rate before flecainide infusion and number of abnormal QRS complexes (0.14, P<.05). One horse suffered from cardiac arrest and died after flecainide infusion. Flecainide is effective for cardioversion of short-term induced AF, but the effect decreases with AF duration. Controlling heart rate may minimize adverse effects caused by flecainide, but the drug should be used with great caution
    corecore